НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ МАШИНЫ ЭЛЕКТРИЧЕСКИЕ ВРАЩАЮЩИЕСЯ

Часть 6

Методы охлаждения (Код ІС)

Rotating electrical machines. Part 6: Methods of cooling (IC Code)

MKC 29.160

Дата введения 2014-06-01

Предисловие

- 1 ПОДГОТОВЛЕН федеральным государственным бюджетным образовательным учреждением высшего профессионального образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВПО "НИУ "МЭИ") и Федеральным государственным унитарным предприятием "Всероссийский научно-исследовательский институт стандартизации и сертификации в машиностроении" (ВНИИНМАШ) на основе собственного аутентичного перевода на русский язык стандарта, указанного в пункте 4
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 333 "Вращающиеся электрические машины"
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ <u>Приказом Федерального</u> агентства по техническому регулированию и метрологии от 23 ноября 2012 г. N 1112-ct
- 4 Настоящий стандарт является идентичным международному стандарту МЭК 60034-6:1991-10* "Машины электрические вращающиеся. Часть 6. Методы охлаждения (Код IC)" (IEC 60034-6 "Rotating electrical machines Part 6: Methods of cooling (IC Code)")

^{*} Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в <u>Службу поддержки пользователей</u>. - Примечание изготовителя базы данных.

5 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в ГОСТ Р 1.0-2012 (раздел 8). Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе "Национальные стандарты", а официальный текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены соответствующее настоящего стандарта уведомление опубликовано в ближайшем выпуске информационного указателя стандарты". Соответствующая "Национальные информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (gost.ru).

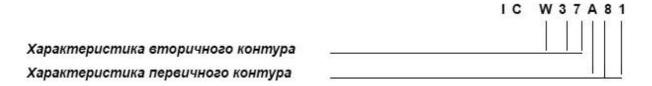
Введение

В этом издании настоящего стандарта последовательность цифр и букв, следующих за кодом IC, изменена.

Вводится следующая новая система обозначений:

Первой идет цифра, обозначающая устройство системы охлаждения, которая применяется как для первичного, так и для вторичного контура.

Каждый контур обозначается буквой, характеризующей хладагент. После этого следует цифра, обозначающая способ его перемещения.


Буква и цифра для первичного хладагента идут на первом месте, после чего следуют буква и цифра, характеризующие второй хладагент.

Пример:

	IC 8A1W
Устройство системы охлаждения	
Характеристика первичного контура	1 1
Характеристика вторичного контура охлаждения —	- 1

В предшествующем издании настоящего стандарта применялась другая система обозначений. Сначала приводилась характеристика вторичного контура, а затем - первичного. Каждый контур обозначался буквой (тип хладагента) и цифрой (устройство контура охлаждения). Затем следовала вторая цифра (способ перемещения хладагента).

Пример:

В этом издании стандарта предусмотрено по возможности упрощенное обозначение путем пропуска в обозначении буквы А и цифры 7 при определенных условиях перемещения вторичного хладагента.

Кроме того, введены новые буквы - F, S, X, Y, значение которых поясняется, а буква E, которая в предыдущем издании обозначала испарительную систему охлаждения, не используется.

Введение новой системы обозначений потребовало пояснений для обозначения разомкнутой и замкнутой систем охлаждения, а также зависимых и независимых составляющих циркуляции (см. раздел 2).

Тип соединения источника и оборудования для контроля перемещения хладагента, которые описаны в предыдущем издании, в настоящем издании не принимаются во внимание.

Отличие в обозначениях систем охлаждения в настоящем и предыдущем изданиях относятся как к полным, так и к сокращенным обозначениям. Примеры сравнения этих обозначений приведены в приложении В.

1 Общие положения

Объектом стандартизации являются компоновка системы охлаждения и методы перемещения хладагента во вращающихся электрических машинах, классификация методов охлаждения и применяемая система их обозначений.

Обозначение метода охлаждения состоит из букв IC и последующих цифр и букв, обозначающих устройство контура охлаждения, тип хладагента и способ его перемещения.

Применяется как полная, так и упрощенная система обозначений. Полная система применяется в случае, когда упрощенная система неприменима.

Обе системы обозначений приведены в таблицах приложения А для наиболее часто используемых типов вращающихся машин вместе с эскизами для отдельных случаев.

2 Определения

- **2.1 охлаждение** (cooling): Процесс, в результате которого тепло, выделяющееся в машине, передается первичному хладагенту, который может циркулировать свободно или, в свою очередь, охлаждается в теплообменнике вторичным хладагентом.
- **2.2 хладагент** (coolant): Среда, жидкость или газ, посредством которых происходит передача тепла.
- **2.3 первичный хладагент** (primary coolant): Среда, жидкость или газ, которые благодаря более низкой температуре, чем прилегающие части машины, отбирают выделяемое тепло при контакте с ними.

Примечание - В машинах может использоваться более одного первичного хладагента.

2.4 вторичный хладагент (secondary coolant): Среда, жидкость или газ, которые благодаря более низкой температуре, чем первичный хладагент, отбирают от него тепло через теплообменник или через наружную поверхность машины.

Примечание - Каждый первичный хладагент может иметь свой собственный вторичный.

2.5 конечный хладагент (final coolant): Последний хладагент, к которому передается тепло.

Примечание - В некоторых машинах конечный хладагент является и первичным.

2.6 окружающая среда (surrounding medium): Среда, жидкость или газ, в которой работает машина.

Примечание - Хладагент может забираться из окружающей среды или выбрасываться в нее.

- **2.7 промежуточная среда** (remote medium): Среда, жидкость или газ, выходящие в окружающую машину среду, из которой хладагент берется или в которую он поступает через отверстия или трубы, на которые может устанавливаться теплообменник.
- **2.8** обмотка с непосредственным (внутренним) охлаждением (direct cooled winding (inner cooled winding): Обмотка, в которой хладагент проходит через полые проводники, трубы или каналы, являющиеся составной частью обмотки внутри ее главной изоляции.
- **2.9 обмотка с косвенным охлаждением** (indirect cooled winding): Обмотка, охлаждение которой осуществляется иным по сравнению с п.2.8 способом.

Примечание - В случаях, когда ни один из этих способов не устанавливается, принимается, что система охлаждения косвенная.

- **2.10 теплообменник** (heat exchanger): Устройство для передачи тепла от одного хладагента к другому, причем эти хладагенты разделены.
- **2.11 труба, канал** (ріре, duct): Конструктивный элемент для направления движения хладагента.

Примечание - Термин "канал" обычно используется, когда он проходит непосредственно через пол, на котором установлена машина. Термин "труба" используется во всех других случаях, когда хладагент выводится из машины или из теплообменника.

2.12 разомкнутый контур охлаждения (open circuit): Контур, в котором конечный хладагент поступает из окружающей или промежуточной среды, проходит через машину или теплообменник и возвращается в окружающую или промежуточную среду.

Примечание - Конечный хладагент всегда циркулирует по разомкнутой системе охлаждения (см. 2.13).

2.13 замкнутый контур охлаждения (closed circuit): Контур, в котором хладагент циркулирует по замкнутому контуру или через машину и, возможно, через теплообменник, в то время как тепло передается от этого хладагента к следующему хладагенту через поверхность машины или через теплообменник.

Примечания

- 1 В общем случае система охлаждения машины может состоять из одного и более замкнутых контуров и всегда последнего разомкнутого контура охлаждения. Каждый первичный, вторичный и/или конечный хладагент может иметь свой контур охлаждения.
- 2 Различные типы систем охлаждения описаны в разделе 4 и в таблицах приложения А.
- **2.14 контур с трубами или каналами** (piped or ducted circuit): Контур, в который хладагент подается через входную или выходную трубу/канал или через обе трубы/канала, которые служат для отделения хладагента от окружающей среды.

Примечание - Система охлаждения может быть как замкнутой, так и разомкнутой (см. 2.12 и 2.13).

- **2.15** система резервного или аварийного охлаждения (stand-by or emergency cooling system): Система охлаждения, установленная в дополнение к основной и предназначенная для использования в случае невозможности применения основной системы.
- **2.16 встроенная часть системы охлаждения** (integral component): Часть системы охлаждения, которая встроена в машину и может быть заменена только при частичной разборке последней.
- **2.17** пристроенная часть системы охлаждения (machine-mounted component): Часть системы охлаждения, которая установлена на машине и может быть заменена без разборки последней.
- **2.18 внешние части системы охлаждения** (separate component): Части системы охлаждения, связанные с машиной, но которые не встраиваются в нее и не устанавливаются на ней.

Примечание - Эти части могут быть установлены в окружающей или промежуточной среде.

- **2.19** зависимое охлаждение (dependent circulation component): Система охлаждения, работа которой зависит (связана) с окружной скоростью ротора основной машины, т.е. вентилятор или насос установлены на валу основной машины или приводятся ею во вращение.
- **2.20** независимое охлаждение (independent circulation component): Система охлаждения, работа которой зависит (связана) с окружной скоростью ротора основной машины, т.е. она имеет свой собственный приводной двигатель.

3 Система обозначений

Обозначение способа охлаждения машины состоит из букв и цифр, как показано ниже.

3.1 Применение обозначений в коде ІС

Система обозначений выглядит следующим образом:*

полное обозначение – I сокращенное обозначение –	C 8 A 1 W 7
3.1.1 международный код (International Cooling)	
3.1.2 цифровое обозначение устройства контура	
охлаждения в соответствии с разделом 4	
3.1.3 буквенное обозначение типа первичного	
хладагента в соответствии с разделом 5 (если буква	
отсутствует, то первичный хладагент – воздух)	
3.1.4 цифровое обозначение способа	
перемещения первичного хладагента (высокая	
температура) в соответствии с разделом 6	**
3.1.5 буквенное обозначение типа вторичного	
хладагента в соответствии с разделом 5 (буква	
отсутствует, если первичный хладагент А – воздух)	38
3.1.6 цифровое обозначение способа	
перемещения вторичного хладагента (низкая	
температура) в соответствии с разделом 6 (в	9
упрощенном обозначении отсутствие цифры означает,	
что W – вода).	

Примечание - Полное обозначение можно определить по наличию после IC трех или пяти букв и цифр в следующей последовательности: цифра-буква-цифра (буква-цифра), например, IC3A1, IC4A1A1, IC7A1W7.

В упрощенном обозначении содержатся две или три последовательные цифры или буква в последней позиции, например, IC31, IC411, IC71W.

3.2 Применение обозначений

Использование упрощенных обозначений является предпочтительным; полные обозначения применяют, в основном, когда упрощенная система неприменима.

^{*} Рисунок соответствует оригиналу. - Примечание изготвителя базы данных.

3.3 Обозначение одинаковых устройств систем охлаждения для различных узлов машины

Для различных узлов машины могут применяться различные хладагенты и способы их перемещения. Они могут обозначаться для каждого узла машины отдельно.

Примеры обозначения различных цепей охлаждения для ротора и статора:

ротор - IC 7H1W, статор - IC 7W5W (упрощенное обозначение);

ротор - 1С 7Н1W7, статор - 1С 7W5W7 (полное обозначение).

Примеры обозначения различных цепей охлаждения машины в целом:

генератор - IC 7H1W, возбудитель - IC 75W (упрощенное обозначение);

генератор - IC 7H1W7, возбудитель - IC 7A5W7 (полное обозначение).

3.4 Обозначение различных устройств систем охлаждения для различных узлов машины

Для различных узлов машины могут применяться различные устройства систем охлаждения. В этом случае обозначение контура следует сразу за обозначением узла машины.

Примеры обозначения:

генератор - IC 81W, возбудитель - IC 75W (упрощенное обозначение);

генератор - IC 8A1W7, возбудитель - IC 7A5W7 (полное обозначение).

3.5 Обозначение обмоток с непосредственным охлаждением

В случае применения в машине обмоток с непосредственным (внутренним) охлаждением часть системы охлаждения, связанная с обмоткой, может обозначаться индексом, заключенным в скобки.

Примеры обозначения:

ротор - IC 7H1W, статор - IC 7(W5)W (упрощенное обозначение); ротор - IC 7H1W7, статор - IC 7(W5)W7 (полное обозначение).

3.6 Обозначение резервной или аварийной системы охлаждения

Для резервной и аварийной систем могут использоваться различные способы охлаждения. Они могут обозначаться кодом IC, соответствующим индексом и словами "резервная" или "аварийная", заключенными в скобки, после обозначения основной системы охлаждения.

Примеры обозначения:

IC 71W (аварийная IC 01) - упрощенное обозначение;

IC 7A1W7 (аварийная IC 0A1) - полное обозначение.

3.7 Комбинированные обозначения

Если встречаются два или более случаев, описанных в 3.3-3.6, то соответствующие описанные выше обозначения могут использоваться совместно.

3.8 Замещение характеристических цифр

Если характеристическая цифра еще не определена или не требуется ее точного знания, она может быть заменена на букву X, например: IC3X, IC4XX.

3.9 Примеры обозначений и эскизов

В приложении А приведены различные обозначения и эскизы для некоторых наиболее распространенных типов вращающихся электрических машин.

4 Цифровая характеристика устройства

контура охлаждения

Характеристическая цифра, следующая сразу за кодом IC, обозначает устройство для циркуляции хладагента (см. 3.1.2) и отвода тепла от машины в соответствии с таблицей 1.

Таблица 1 - Устройство контура охлаждения

Характерис- тическая цифра	Краткое описание	Определение
0 (см. примечание 1)	Свободная циркуляция	Хладагент свободно поступает в машину из окружающей среды и свободно возвращается в нее
1 (см. примечание 1)	Вентиляция с помощью входной трубы или входного канала	Хладагент попадает в машину из промежуточной среды через входную трубу или канал, проходит через машину и затем свободно возвращается в окружающую среду (разомкнутая система охлаждения)
2 (см. примечание 1)	Вентиляция с помощью выходной трубы или выходного канала	Хладагент попадает в машину из окружающей среды, проходит через машину и удаляется из нее через выходную трубу или канал в промежуточную среду (разомкнутая система охлаждения)
3 (см. примечание 1)	Вентиляция с помощью входной и выходной трубы или канала	Хладагент попадает в машину из промежуточной среды через входную трубу или канал, проходит через машину и затем через выходную трубу или канал возвращается в промежуточную среду (разомкнутая система охлаждения)
4	Охлаждение наружной поверхности машины	Первичный хладагент циркулирует по замкнутому контуру и отдает тепло через наружную поверхность машины (а также через сердечник статора и другие теплопроводящие части) конечному хладагенту, которым является окружающая машину среда. Поверхность может быть гладкой или ребристой с внешней оболочкой для улучшения теплопередачи или без нее
5 (см. примечание 2)	Встроенный теплообменник (использующий окружающую среду)	

6 (см. примечание 2)	Установленный на машине теплообменник (использующий окружающую среду)	Первичный хладагент циркулирует по замкнутому контуру и отдает тепло через установленный на машине теплообменник конечному хладагенту, которым является окружающая среда
7 (см. примечание 2)	Встроенный теплообменник (использующий промежуточную среду)	Первичный хладагент циркулирует по замкнутому контуру и отдает тепло встроенному теплообменнику, являющемуся составной частью машины. Конечным хладагентом является промежуточная среда
8 (см. примечание 2)	Установленный на машине теплообменник (использующий промежуточную среду)	Первичный хладагент циркулирует по замкнутому контуру и отдает тепло через установленный на машине теплообменник вторичному хладагенту, которым является промежуточная среда
9 (см. примечание 2, 3)	Отдельно стоящий теплообменник (использующий окружающую или промежуточную среду)	Первичный хладагент циркулирует по замкнутому контуру и отдает тепло через отдельно установленный теплообменник вторичному хладагенту, которым является окружающая или промежуточная среда

Примечания

- 1 Фильтры или уплотнения для защиты от пыли или для глушения шума могут устанавливаться в корпусе или в каналах. Цифры 0-3 также применяются в машинах, в которых хладагент поступает через теплообменник из окружающей среды, чтобы обеспечить его более низкую температуру, чем окружающая среда, или когда хладагент выводится через теплообменник, чтобы понизить температуру окружающей среды.
- 2 Конструкция теплообменника не нормируется (гладкие или ребристые трубы и др.).
- 3 Внешний теплообменник может быть установлен рядом с машиной или в отдельном от машины месте. Газообразный вторичный хладагент может быть окружающей средой или промежуточной средой (см. также приложение А, таблица А3).

5 Характеристическая буква для обозначения типа хладагента

5.1 Хладагент (см. 3.1.3, 3.1.5) обозначается одной из букв в соответствии с таблицей 2.

Таблица 2 - Хладагент

Характеристическая буква	Хладагент
А (см. 5.2)	Воздух
F	Фреон
н	Водород
N	Азот
С	Углекислый газ CO ₂
W	Вода
U	Масло
Ѕ (см. 5.3)	Любой другой хладагент
Ү (см. 5.4)	Еще не установленный хладагент

- 5.2 Если простым хладагентом является воздух или в случае применения двух хладагентов, одним из которых является воздух, в упрощенном обозначении буква A не ставится.
- 5.3 В случае буквы S тип хладагента может быть указан в другом месте (в технической или торговой документации), например, IC 3S7 "S" определяется в документации.
- 5.4 Когда тип хладагента выбран окончательно, временно используемая буква "Y" может быть заменена на соответствующую окончательную характеристическую букву.

6 Характеристическая цифра для способа перемещения хладагента

Характеристическая цифра (при полном обозначении) после каждой буквы, обозначающей тип хладагента, показывает способ его перемещения (см. 3.1.4, 3.1.6) в соответствии с таблицей 3.

Таблица 3 - Способ перемещения хладагента

Характерный номер	Описание	Определение
0	Свободная конвекция	Хладагент перемещается благодаря разности температур. Вентилирующее действие ротора незначительно
1	Самоохлаждение	Перемещение хладагента зависит от окружной скорости основной машины или за счет вращения ротора, или за счет составляющих, предназначенных для этих целей, установленных на роторе основной машины, или с помощью вентилятора или насоса, приводимых ротором основной машины
2, 3, 4		Зарезервировано для использования в будущем
5 (см. примечание)	Встроенное независимое охлаждение	Хладагент перемещается с помощью встроенного устройства, получающего энергию независимо от скорости основной машины, т.е. встроенного вентилятора или насоса, приводимого своим собственным электродвигателем
6 (см. примечание)	Встроенное независимое охлаждение, установленное на машине	Хладагент перемещается с помощью установленного на машине устройства, получающего энергию независимо от ее скорости, т.е. установленный на машине вентилятор или насос, приводимый своим собственным электродвигателем
7 (см. примечание)	Отдельное и независимое охлаждение или подача хладагента под давлением	Хладагент перемещается с помощью отдельно установленного и не зависящего от машины устройства или под давлением, т.е. от водопроводной или газовой сети под давлением

8	Охлаждение	Перемещение хладаге	
	благодаря	осуществляется	за счет
(см. примечание)	передвижению машины	относительного машины и хладаген движению машины в х за счет нахождения	га благодаря ладагенте или
		потоке жидкости или га	138
9	Все другие способы перемещения хладагента	Перемещение осуществляется отличным от описан требующим полного оп	ных выше и

Примечание - Использование независимых устройств для перемещения хладагента не исключает вентилирующего действия ротора или наличия дополнительного вентилятора, установленного непосредственно на роторе основной машины.

Приложение А (справочное). Используемые обозначения

Приложение А (справочное)

В этом приложении приводятся упрощенные и полные обозначения для ряда наиболее используемых типов вращающихся электрических машин.

Характерные цифры: 0, 1, 2, 3 А.1 (разомкнутые системы охлаждения, используется окружающая или промежуточная среда)

Характерные цифры: 4, 5, 6 A.2 (первичный контур замкнут, вторичный контур разомкнут, используется окружающая среда)

Характерные цифры: 7, 8, 9 А.3 (первичный контур замкнут, вторичный контур разомкнут, используется окружающая или промежуточная среда)

Общая информация о таблицах

В столбцах таблиц А.1-А.3 в столбцах* указаны характеристические цифры для устройства контура охлаждения, а в строках - цифры, характеризующие способ перемещения хладагента.

Символы, используемые в эскизах:

🕇 - Встроенный или установленный на машине зависимый вентилятор.

- Независимый вентилятор в контуре охлаждения.

- Канал или труба, не являющиеся частью машины.

Таблица А.1 - Примеры разомкнутых систем, использующих для охлаждения окружающую или промежуточную среду

^{*} Текст документа соответствует оригиналу. - Примечание изготовителя базы данных.

Эскизы соответствуют перемещению охлаждающего воздуха от заднего к переднему подшипниковому щиту. Воздух может перемещаться в обратном направлении, входить в машину с двух сторон и выходить в ее середине в зависимости от конструктивных особенностей машины.

В верхней строке каждой клетки таблицы приводится полное (справа) и упрощенное (слева) обозначение системы охлаждения с воздухом и/или водой в качестве хладагента (см. 3.2 и 5.1).

Цифровая характ 4)	Цифровая характеристика способа перемещения хладагента (см. раздел 6)			
0 Свободная циркуляция (с использованием окружающей среды)	1 Вентиляция с помощью входной трубы или входного канала (с использованием промежуточной среды)	2 Вентиляция с помощью выходной трубы или выходного канала (с использованием окружающей среды)	3 Вентиляция с помощью входной и выходной трубы или канала (с использованием промежуточной среды)	
IC00 IC0A0				0. Свободная конвекция
IC01 IC0A1	IC11 IC1A1	IC21 IC2A1	IC31 IC3A1	1 Самоохлаждение
ICOS ICOA6	IC15 IC1A5	IC25 IC2A5	IC35 IC3A5	5 Циркуляция встроенным независимым вентилятором
ICO6 ICOA6	IC16 IC1A6	IC26 IC2A6	IC36 IO3A6	6 Циркуляция встроенным независимым вентилятором, установленным на машине
	IC17 IC1A7	IC27 IC2A7	IC37 IC3A7	7 Циркуляция отдельным и независимым вентилятором или подача хладагента под давлением

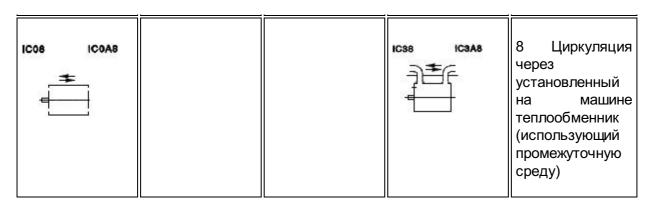


Таблица А.2 - Примеры для замкнутых первичных цепей охлаждения и разомкнутых вторичных с использованием окружающей среды для охлаждения

Цифровая характери раздел 4)	Цифровая способа пе раздел 6)	характеристика ремещения (см.		
4 Охлаждение наружной поверхности машины (с использованием окружающей среды)	5 Встроенный теплообменник (использующий окружающую среду)	6 Установленный на машине теплообменник (использующий окружающую среду)	первичного хладагента (см. примечание)	вторичного хладагента
IC410 IC4A1A0	IC510 IC5A1A0	IC610 IC6A1A0		0 Свободная конвекция
IC411 IC4A1A1	IC511 IC5A1A1	IC611 IC6A1A1		1 Самоохлаждение
				5 Циркуляция встроенным независимым вентилятором
IC416 IC4A1A6	IC516 IC5A1A6	IC616 IC6A1A6		6 Циркуляция встроенным независимым вентилятором, установленным на машине
				7 Циркуляция отдельным и независимым вентилятором или подача хладагента под давлением

IC418	IC4A1A8	IC518	IC5A1A8	IC618	IC6A1A8	8	Циркуляция	a
	<u>*</u>		=	= P	*	на тепл (исг	ановленный машине пообменник пользующий межуточную	9

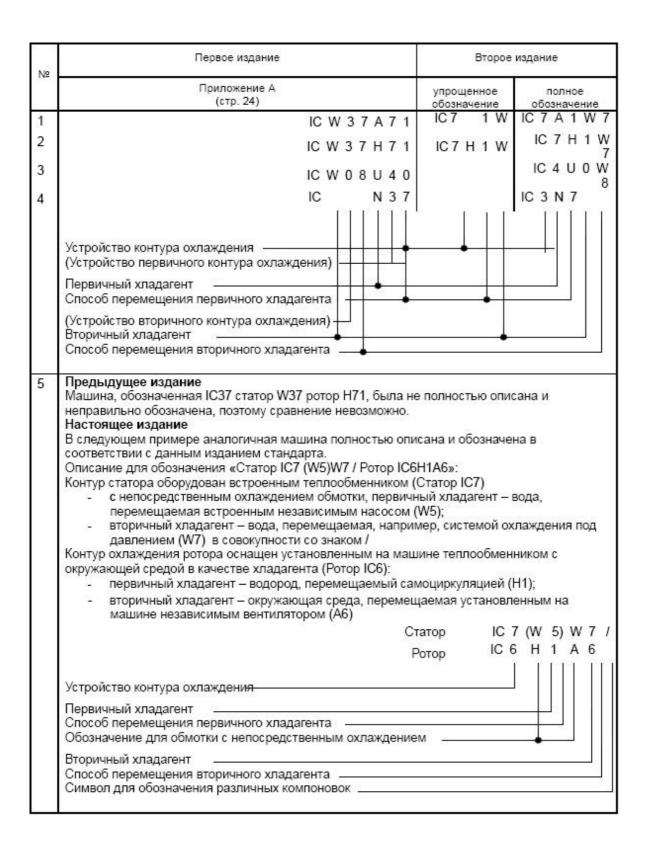
Примечание - Приведенные в этой таблице примеры связаны с перемещением вторичного хладагента. Характерной цифрой для перемещения первичного хладагента является "1". Очевидно, что другие, не показанные здесь конструкции, также могут быть обозначены в коде IC. Так, конструкция с установленным на машине независимым вентилятором для первичного хладагента будет иметь обозначение IC 666 (IC 6A6A6) вместо IC 616 (IC 6A1A6).

Таблица А.3 - Примеры для замкнутых первичных цепей охлаждения и разомкнутых вторичных с использованием для охлаждения промежуточной или окружающей среды

Цифровая характеристика устройства контура охлаждения (см. раздел 4)				Цифровая ха способа переме раздел 6)	рактеристика ещения (см.
7 Встроенный теплообменник (использующий промежуточную среду)	8 Установленный на машине теплообменник (использующий промежуточную среду)	9 Отдельн теплообменник	но стоящий	первичного хладагента	вторичного хладагента (см. примечание)
		вторичный хладагент: жидкость, промежуточная среда	вторичный хладагент: газ, промежуточная или окружающая среда		
IC70W IC7A0W7				0 Свободная конвекция	
IC71W IC7A1W7	IC81W IC8A1W7	IC91W IC9A1W7	IC917 IC9A1A7	1 Самоохлаждение	
IC75W IC7A5W7	IC85W IC8A5W7	IC95W IC9A5W7	IC967 IC9A5A7	5 Циркуляция встроенным независимым компонентом	
IC76W IC7A6W7	IC86W IC8A6W7	IC96W IC9A6W7	IC967 IC9A6A7	6 Циркуляция встроенным независимым компонентом, установленным на машине	

IC97W IC9A7W7 IC9A7A7	7 Циркуляция отдельным и независимым компонентом или подача хладагента под давлением
	8 Циркуляция через установленный на машине теплообменник (использующий промежуточную среду)

Примечание - Приведенные в этой таблице примеры связаны с перемещением первичного хладагента. Характерной цифрой для перемещения вторичного хладагента является "7". Очевидно, что другие, не показанные здесь конструкции, также могут быть обозначены в коде IC. Так, конструкция с установленным на машине независимым насосом для вторичного хладагента будет иметь обозначение IC 71W6 (IC 7A1W6) вместо IC 71W7 (IC 7A1W7).


Приложение В (справочное). Сравнение примеров из первого и второго изданий стандарта МЭК 34-6

Приложение В (справочное)

Таблица В.1 - Сравнение примеров обозначений, приведенных в первом и втором изданиях стандарта МЭК 34-6

Nº	Первое издание		Второе издание	
	Часть I Таблица 1	Часть II Приложение А	Таблицы А.1, А.2, А.3	
			упрощенное обозначение	полное обозначение
1	IC 0 0	-	IC 0 0	IC 0 A 0
2	IC 0 1	IC 0 1	IC 0 1	IC 0 A 1
3	.=	IC 0 3	*	*
4	IC 0 5	-	IC 0 5	IC 0 A 5
5	IC 1 1	IC 1 1	IC 1 1	IC 1 A 1
6	×200000 - 10	IC 1 3	*	
7	IC 1 6	, ,,, ,	IC 1 6	IC 1 A 6
8	IC 1 7	<u></u>	IC 1 7	IC 1 A 7
9	IC 2 1	IC 2 1	IC 2 1	IC 2 A 1
10	:-	IC 2 6	IC 2 6	IC 2 A 6
11	IC 3 1	120	IC 3 1	IC 3 A 1
12	IC 3 7	IC 3 7	IC 3 7	IC 3 A 7
13	85.2 B	IC 0 0 4 1	IC 4 1 0	IC4 A 1 A 0
14	IC 4 1	IC 0 1 4 1	IC 4 1 1	IC 4 A 1 A 1
15	IC 4 8	9-3-7 PENNINGER (#2)	IC 4 1 8	IC4 A 1 A 8
16	IC 5 1	IC 0 1 5 1	IC 5 1 1	IC 5 A 1 A 1
17	IC 6 1	220	IC 6 1 1	IC 6 A 1 A 1
	Устройство контура охлаждения Способ охлаждения			
	Устройство контура охлаждения (Устройство первичного контура охлаждения)			
	Первичный хладагент Способ перемещения первичного хладагента			
	(Устройство вторичного контура охлаждения) — Вторичный хладагент —			
	Способ перемещения вторичного хладагента			

Таблица В.2 - Сравнение примеров обозначений, приведенных в первом (Приложение A, стр. 24) и втором изданиях стандарта МЭК 34-6

УДК 621.313.3 МКС 29.160

Ключевые слова: машины электрические вращающиеся, классификация методов охлаждения, система обозначений

Электронный текст документа подготовлен АО "Кодекс" и сверен по: официальное издание М.: Стандартинформ, 2014